Dr. G.S Prasad M.Sc., M.Phil., Ph.D.
Professor, Department of Mathematics
C.M.R Institute of technology

No.132, AECS Layout, ITPL Road
Bangalore - 560037
Email:-gsprasadphd@gmail.com

Gradient of a scalar function, unit normal, directional derivative, divergence of a vector function, Curl of a vector function, solenoidal and irrotational fields, simple and direct problems, application of Laplace transform to differential equation and simultaneous differential equations.

Gradient of a Scalar Function

$$
\text { Let } \phi=\phi(x, y, z) \text { be a given scalar field, then the }
$$ vector whose X, Y, Z components are $\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}$ respectively is called the gradient of ϕ at the point (x, y, z). It is denoted by grad ϕ or $\nabla \phi$.

$\operatorname{Grad} \phi=\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}$
Problems:-

1. If $\phi(x, y, z)=x^{2}-y^{2}+2 y z+2 z^{2}$ find $\nabla \phi$ at the point $(1,-2,1)$.

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
& \nabla \phi=2 x \hat{\imath}+(-2 y+2 z) \hat{\jmath}+(2 y+4 z) \hat{k} \\
& \nabla \phi(1,-2,1)=2 \hat{\imath}+6 \hat{\jmath}+0 \hat{k}
\end{aligned}
$$

2．If $\phi(x, y, z)=x^{2} y^{3} z^{4}$ find $\operatorname{grad} \phi$ ．

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
& =2 x y^{3} z^{4} \hat{\imath}+3 x^{2} y^{2} z^{4} \hat{\jmath}+4 x^{2} y^{3} z^{3} \hat{k}
\end{aligned}
$$

3．服 $\phi=x y+y z+z x$ and $:=:=x^{2} y \hat{\imath}+y^{2} z \hat{\jmath}+z^{2} x \hat{k}$ show that细．grad $\phi=25$ at the point $(3,-1,2)$

$$
\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}=(y+z) \hat{\imath}+(x+z) \hat{\jmath}+(y+x) \hat{k}
$$

$$
\text { Wh }(3,-1,2)=\hat{\imath}+5 \hat{\jmath}+2 \hat{k}-------1
$$

$$
\vec{A}=-9 \hat{\imath}+2 \hat{\jmath}+12 \widehat{k}------------2
$$

$$
\text { 曲. } \operatorname{grad} \phi=-9+10+24=25
$$

4．If $\phi=x^{3}+y^{3}+z^{3}-3 x y z$ find $\nabla \phi$ and $|\nabla \phi|$ at the point

$$
p(1,-1,2) .
$$

$\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}$
$\nabla \phi=\left(3 \mathrm{x}^{2}-3 \mathrm{yz}\right) \hat{\imath}+\left(3 y^{2}-3 x z\right) \hat{\jmath}+\left(3 \mathrm{z}^{2}-3 \mathrm{x} y\right) \hat{k}$
$\nabla \phi(1,-1,2)=9 \hat{\imath}-3 \hat{\jmath}+15 \hat{k}$
$|\nabla \phi|(1,-1,2)=\sqrt{(9)^{2}+(-3)^{2}+(15)^{2}}=3 \sqrt{25}$
5. If $\phi=x^{2} y+y^{2} z+z^{2} x$ find $\nabla \phi$ at $(1,2,3)$
$\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}$
$\nabla \phi=\left(\mathrm{z}^{2}+2 \mathrm{xy}\right) \hat{\imath}+\left(x^{2}+2 y z\right) \hat{\jmath}+\left(\mathrm{y}^{2}+2 z x\right) \hat{k}$
$\nabla \phi(1,2,3)=13 \hat{\imath}+13 \hat{\jmath}+10 \hat{k}$
6. If $\phi=x^{n}+y^{n}+z^{n}$ where n is a non-zero real constant, prove that $\nabla \phi . r=\mathrm{n} \phi$

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
& =n x^{n-1} \hat{\imath}+n y^{n-1} \hat{\jmath}+n z^{n-1} \hat{k}
\end{aligned}
$$

$\nabla \phi \cdot r=\mathrm{n}\left(x^{n-1} \hat{\imath}+y^{n-1} \hat{\jmath}+z^{n-1} \hat{k}\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k})$
$=\mathrm{n}\left(x^{n}+y^{n}+z^{n}\right)=\mathrm{n} \phi$
7. If a is a constant vector show that $\nabla(a \cdot \vec{r})=a$

Let $a=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, r=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
a. $\vec{r}=a=a_{1} x+a_{2} y+a_{3} z$

$$
\begin{aligned}
& \nabla(a \cdot \vec{r})=\frac{\partial(a \cdot \vec{r})}{\partial x} \hat{\imath}+\frac{\partial(a \cdot \vec{r})}{\partial y} \hat{\jmath}+\frac{\partial(a . \vec{r})}{\partial z} \hat{k} \\
& =a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}=a
\end{aligned}
$$

Unit Normal:- $\nabla \phi$ is the normal vector to the surface $\phi(x, y, z)$ then a unit normal vector is denoted by \hat{n} is defined as

$$
\hat{n}:=\frac{\nabla \phi}{|\nabla \phi|}=\frac{i i}{\mid i i \hat{}}
$$

Where $\mathrm{i}: \mathrm{i}=\nabla \phi=$ normal vector

Directional Derivative:- if \vec{a} is any vector and ϕ is any scalar point function then $\nabla \phi \cdot{ }_{|c| c}^{4}$ 解 represents the component of $\nabla \phi$ in the direction of \vec{a} which is known as the directional derivative of ϕ in the direction of \vec{a}.

Directional derivative $=\nabla \phi \cdot \frac{i t}{i t}=\nabla \phi \cdot \hat{a}$
Problems:-

1. Find the unit normal to the surface $y z+z x+x y=c$ at the point $p(-1,2,3)$.

The equation of the given surface is $\phi(x, y, z)=c$

$$
\phi=y z+z x+x y
$$

$\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}$

$$
\nabla \phi=(y+z) \hat{\imath}+(x+z) \hat{\jmath}+(y+x) \hat{k}
$$

$$
\nabla \phi(-1,2,3)=5 \hat{\imath}+2 \hat{\jmath}+\hat{k}
$$

$$
|\nabla \phi|=\sqrt{25+4+1}=\sqrt{30}
$$

$$
\hat{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{5 \hat{+}+2 \hat{\jmath}+\hat{k}}{\sqrt{30}}
$$

2.Find the unit normal to the surface $x^{3} y^{3} z^{2}=4$ at the point $p(-1,-1,2)$

The equation of the given surface is $\phi(x, y, z)=-4+x^{3} y^{3} z^{2}$

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
&=3 x^{2} y^{3} z^{2} \hat{\imath}+3 x^{3} y^{2} z^{2} \hat{\jmath}+2 x^{3} y^{3} z \hat{k}
\end{aligned}
$$

$$
\nabla \phi(-1,-1,2)=-12 \hat{\imath}-12 \hat{\jmath}+4 \widehat{k}
$$

$$
|\nabla \phi|=\sqrt{(-12)^{2}+(-12)^{2}+4^{2}}=\sqrt{304}
$$

$$
\hat{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{-12 \hat{\imath}-12 \hat{\jmath}+4 \hat{\kappa}}{\sqrt{304}}
$$

$$
=\frac{-4}{\sqrt{304}}(3 \hat{\imath}+3 \hat{\jmath}-\hat{k})
$$

3.Find the angle between the direction of the normals to the surface $x^{2} y z=1$
at the point $p(-1,1,1)$ and $q(1,-1,-1)$
The given surface is $\phi(x, y, z)=x^{2} y z=1$
At any point (x, y, z) of this surface the normal is along the vector.
$\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}=2 x y z \hat{\imath}+x^{2} z \hat{\jmath}+x^{2} y \hat{k}$
Therefore, at the point $p(-1,1,1)$ the normal is along the vector
$\mathrm{a}=|\nabla \phi| p=-2 \hat{\imath}+\hat{\jmath}+\hat{k}$
at the point $\mathrm{q}(1,-1,-1)$ the normal is along the vector
$\mathrm{b}=|\nabla \phi| \mathrm{q}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
If θ is the angle between the direction of these normals, we have

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{-6}{\sqrt{6} \sqrt{6}}=-1
$$

This gives $\theta=\pi$ as the required angle. Thus at the given points the normals to the given surfaces are in opposite direction.
4.Find the angle between the surfaces
$x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $p(2,-1,2)$
The angle between the surfaces at a common point p is defined to be equal to the angle between the normals to the surface at the point p.

The given surfaces are S_{1} whose equation is $\phi(x, y, z)=x^{2}+y^{2}+z^{2}=9$
And S_{2} whose equation is $\psi(x, y, z)=x^{2}+y^{2}-z=3$

$$
\begin{aligned}
& \nabla \phi=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}=4 \hat{\imath}-2 \hat{\jmath}+2 \hat{k} \\
& \nabla \psi=2 x \hat{\imath}+2 y \hat{\jmath}-\hat{k}=4 \hat{\imath}-2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

$\nabla \phi$ is along the normal to the surface S_{1} and $\nabla \psi$ is along the normal to the surface S_{2}. Therefore, θ is the angle between the surfaces S_{1} and S_{2} at the point p , then θ is the angle between $\nabla \phi$ and $\nabla \psi$ at p .
$\nabla \phi . \nabla \psi=|\nabla \phi||\nabla \psi| \cos \theta$

$$
\begin{aligned}
& \cos \theta= \frac{\nabla \phi \cdot \nabla \psi}{|\nabla \phi||\nabla \psi|}=\frac{2(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \cdot(4 \hat{\imath}-2 \hat{\jmath}-\hat{k})}{\sqrt{16+4+4} \sqrt{16+4+1}} \\
&=\frac{16}{6 \sqrt{21}}=\frac{8}{3 \sqrt{21}} \quad \theta=\cos ^{-1} \frac{8}{3 \sqrt{21}}
\end{aligned}
$$

5.Find the angle between the tangents to the curve

$$
\begin{aligned}
& \vec{r}=\left(t-\frac{t^{3}}{3}\right) \hat{\imath}+t^{2} \hat{\jmath}+\left(t+\frac{t^{3}}{3}\right) \hat{k} \text { at } t= \pm 3 \\
& \quad\left(\frac{d \vec{r}}{d t}\right)=\left(1-\frac{3 t^{2}}{3}\right) \hat{\imath}+2 t \hat{\jmath}+\left(1+\frac{3 t^{2}}{3}\right) \hat{k}
\end{aligned}
$$

When $t=3, t_{1}=\left(\frac{d \vec{r}}{d t}\right)=(1-9) \hat{\imath}+6 \hat{\jmath}+(1+9) \hat{k}=-8 \hat{\imath}+6 \hat{\jmath}+10 \hat{k}$

$$
\text { When } t=-3, t_{2}=\left(\frac{d \vec{r}}{d t}\right)=(1-9) \hat{\imath}-6 \hat{\jmath}+(1+9) \hat{k}=
$$

$$
-8 \hat{\imath}-6 \hat{\jmath}+10 \hat{k}
$$

$$
\cos \theta=\frac{t_{1} \cdot t_{2}}{\left|t_{1}\right|\left|t_{2}\right|}=\frac{(-8 \hat{\imath}+6 \hat{\jmath}+10 \hat{k}) \cdot(-8 \hat{\imath}-6 \hat{\jmath}+10 \hat{k})}{\sqrt{64+36+100} \sqrt{64+36+100}}
$$

$$
=\frac{64-36+100}{\sqrt{200} \sqrt{200}}=\frac{128}{200}=\frac{16}{25}
$$

6. Find the directional derivation of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ along $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$.

$$
\begin{aligned}
& \nabla \phi=\left(2 x y z+4 z^{2}\right) \hat{\imath}+x^{2} z \hat{\jmath}+\left(x^{2} y+8 x z\right) \hat{k} \\
& \nabla \phi(1-2,-1)=8 \hat{\imath}-\hat{\jmath}-10 \hat{k}-------------1 \\
& \hat{a}=\frac{2 \hat{1} \cdot \hat{\jmath}-2 \hat{k}}{\sqrt{4+1+4}}=\frac{2 \hat{\imath}-\hat{\jmath}-2 \hat{k}}{3} \\
& \nabla \phi \cdot \hat{a}=\frac{1}{3}[16+1+20]=\frac{37}{3}
\end{aligned}
$$

7.Find the directional derivative of $\phi(x, y, z)=2 x^{2} y^{3} z^{4}$ at $(1,-1,1)$ in the direction of $\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}= \\
& 4 x y^{3} z^{4} \hat{\imath}+6 x^{2} y^{2} z^{4} \hat{\jmath}+8 x^{2} y^{3} z^{3} \hat{k}
\end{aligned}
$$

$$
\nabla \phi(1,-1,1)=-4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k}
$$

$$
\hat{a}=\frac{\hat{\imath}+2 \hat{\jmath}-2 \hat{k}}{\sqrt{9}}=\frac{\hat{\imath}+2 \hat{\jmath}-2 \hat{k}}{3}
$$

$\nabla \phi \cdot \hat{a}=\frac{1}{3}(-4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})$

$$
=\frac{1}{3}[-4+12+16]=\frac{24}{3}=8
$$

8.Find the directional derivative of $\phi(x, y, z)=x^{2} y z+x z^{2}$ at $(-1,2,1)$ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$

$$
\begin{aligned}
& \begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
&=\left(2 x y z+z^{2}\right) \hat{\imath}+x^{2} z \hat{\jmath}+\left(x^{2} y+2 z x\right) \hat{k}
\end{aligned} \\
& \begin{aligned}
\nabla \phi(-1,2,1) & =-3 \hat{\imath}+\hat{\jmath}+0 \hat{k} \quad \hat{a}=\frac{2 \hat{\imath}-\hat{\jmath}-2 \hat{k}}{3}
\end{aligned} \\
& \nabla \phi \cdot \hat{a}=\frac{1}{3}[-6-1]=\frac{-7}{3}
\end{aligned}
$$

9. If $\phi=\frac{x z}{x^{2}+y^{2}}$ find the directional derivative at $(1,-1,1)$ in the direction $\vec{A}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$

$$
\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}
$$

$\frac{\partial \phi}{\partial x}=\frac{y^{2} z-z x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \quad \frac{\partial \phi}{\partial y}=\frac{-2 x z y}{\left(x^{2}+y^{2}\right)^{2}} \quad \frac{\partial \phi}{\partial z}=\frac{x}{\left(x^{2}+y^{2}\right)}$
$\nabla \phi=\frac{y^{2} z-z x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \hat{\imath}+\frac{-2 x z y}{\left(x^{2}+y^{2}\right)^{2}} \hat{\jmath}+\frac{x}{\left(x^{2}+y^{2}\right)} \hat{k}$
$\nabla \phi(1,-1,1)=0 \hat{\imath}+\frac{2}{4} \hat{\jmath}+\frac{1}{2} \hat{k}=\frac{1}{2} \hat{\jmath}+\frac{1}{2} \hat{k}$

$$
\hat{a}=\frac{\hat{\imath}-2 \hat{\jmath}+\hat{k}}{\sqrt{6}}
$$

$\nabla \phi \cdot \hat{a}=\frac{1}{\sqrt{6}}\left[-1+\frac{1}{2}\right]=\frac{-1}{2 \sqrt{6}}$
10. If the directional derivative of $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at the point $p(-1,1,2)$ has a maximum magnitude of 32 units in the direction parallel to the y-axis, find a, b, c.
$\nabla \phi=\left(a y^{2}+3 c z^{2} x^{2}\right) \hat{\imath}+(2 a x y+b z) \hat{\jmath}+$

$$
\left(b y+2 c z x^{3}\right) \hat{k}
$$

$\nabla \phi(-1,1,2)=(a+12 c) \hat{\imath}+(-2 a+2 b) \hat{\jmath}+$ $(b-4 c) \widehat{k}------1$

It is given that the directional derivative of ϕ at p has a maximum magnitude of 32 in the direction parallel to the y-axis $\nabla \phi=32 \hat{\jmath}$ \qquad
Compare 1 \& 2

$$
\begin{gathered}
-2 a+2 b=32 \quad a+12 c=0 \quad b-4 c=16 \\
(-a+b=16)+(a+12 c=0)=(b+12 c=16) \\
(b+12 c=16)-(b-4 c=0)=(16 c=16) \\
c=1, b=4, a=-12
\end{gathered}
$$

11.Find the maximum directional derivative of $\log \left(x^{2}+y^{2}+z^{2}\right)$ at $(1,1,1)$

The maximum directional derivative of ϕ is $|\nabla \phi|$
$\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k}$

$$
=\left(\frac{2 x}{x^{2}+y^{2}+z^{2}}\right) \hat{\imath}+\left(\frac{2 y}{x^{2}+y^{2}+z^{2}}\right) \hat{\jmath}+\left(\frac{2 z}{x^{2}+y^{2}+z^{2}}\right) \hat{k}
$$

$\nabla \phi(1,1,1)=\frac{2}{3} \hat{\imath}+\frac{2}{3} \hat{\jmath}+\frac{2}{3} \hat{k} \quad|\nabla \phi|=\sqrt{\frac{4}{9}+\frac{4}{9}+\frac{4}{9}}=\frac{6}{3}=2$
12.Find the angle between the surfaces $x^{2} y z+3 x z=5$ and $x^{2} y z^{3}=2$ at (1,-2,1)

$$
\begin{aligned}
& S_{1}=\nabla \phi=\frac{\partial \phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \phi}{\partial z} \hat{k} \\
&=\left(2 x y z+3 z^{2}\right) \hat{\imath}+x^{2} z \hat{\jmath}+\left(x^{2} y+6 z x\right) \hat{k}
\end{aligned}
$$

$$
\nabla \phi=(4+3) \hat{\imath}-\hat{\jmath}+(-2-6) \hat{k}=7 \hat{\imath}-\hat{\jmath}-8 \hat{k}
$$

$$
S_{2}=\nabla \psi=2 x y z^{3} \hat{\imath}+x^{2} z^{3} \hat{\jmath}+3 x^{2} y z^{2} \hat{k}
$$

$$
\nabla \psi=4 \hat{\imath}-\hat{\jmath}-6 \hat{k}
$$

$$
\cos \theta=\frac{\nabla \phi \cdot \nabla \psi}{|\nabla \phi||\nabla \psi|}=\frac{(7 \hat{\imath}-\hat{\jmath}-8 \hat{k}) \cdot(4 \hat{\imath}-\hat{\jmath}-\hat{k})}{\sqrt{49+1+64} \sqrt{16+1+36}}
$$

$$
=\frac{28+1+48}{\sqrt{114} \sqrt{53}}
$$

Divergence of a vector function:-

$$
\text { If } \vec{A}=A_{1} \hat{\imath}+A_{2} \hat{\jmath}+A_{3} \hat{k} \text { is a vector function }
$$

defined and differentiable at each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) then divergence of \vec{A} is denoted by $\operatorname{div} \vec{A}$ or $\nabla \cdot \vec{A}$ and is defined by
$\operatorname{div} \vec{A}=\nabla \cdot \vec{A}=\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}$
Hence, divergence factor of a vector function is a scalar function.
Irrotational vector or conservative force field or potential field :-
A vector field \vec{A} is said to be a irrotational vector or a conservative force field or potential field or curl force vector if $\nabla \mathrm{X} \vec{A}=0$

Scalar potential:- a vector field \vec{A} which can be derived from the scalar field ϕ such that $\mathrm{F}=\nabla \phi$ is called conservative force field and ϕ is called Scalar potential.
1.Show that $\vec{F}=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}$ is both solenoidal and irrotational.
$\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)}=0$

$$
\begin{aligned}
& \text { Curl } \vec{F}=\nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
-\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& =\hat{\imath}\left[0-\frac{\partial}{\partial z}\left(\frac{y}{x^{2}+y^{2}}\right)\right]-\hat{\jmath}\left[0-\frac{\partial}{\partial z}\left(\frac{x}{x^{2}+y^{2}}\right)\right] \\
& +\widehat{k}\left[\frac{\partial}{\partial x}\left(\frac{y}{x^{2}+y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{x}{x^{2}+y^{2}}\right)\right] \\
& 0 \hat{\imath}+\hat{\jmath}+\hat{k}\left[\frac{-2 y x}{\left(x^{2}+y^{2}\right)^{2}}-\frac{-2 y x}{\left(x^{2}+y^{2}\right)^{2}}\right]
\end{aligned}
$$

$=0$ is irrotational.
2.Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that the vector $\vec{F}=(\sin y+a z) \hat{\imath}+$ $(b x \cos y+z) \vec{\jmath}+(x+c y) \hat{k}$ is irrotational

$$
\begin{aligned}
& \nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin y+a z & b x \cos y+z & x+c y
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial}{\partial y}(x+c y)-\frac{\partial}{\partial z}(b x \cos y+z)\right]-\hat{\jmath}\left[\frac{\partial}{\partial x}(x+c y)-\frac{\partial}{\partial z}(\sin y+a z)\right] \\
& +\hat{k}\left[\frac{\partial}{\partial x}(b x \cos y+z)-\frac{\partial}{\partial y}(\sin y+a z)\right] \\
& =\hat{\imath}[c-1]-\hat{\jmath}[1-a]+\hat{k}[b \cos y-\cos y] \quad \text { If } \mathrm{a}=\mathrm{b}=\mathrm{c}=1, \\
& =\hat{\imath}[1-1]-\hat{\jmath}[1-1]+\hat{k}[\cos y-\cos y]=0
\end{aligned}
$$

3.Find the divergence and curl of the vector

$$
\vec{F}=\left(3 x^{2} y-z\right) \hat{\imath}+\left(x z^{2}+y^{4}\right) \hat{\jmath}-2 x^{2} z^{2} \hat{k}
$$

$\operatorname{Div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=6 x y+4 y^{3}-4 x^{2} z$
$\nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 x^{2} y-z & x z^{2}+y^{4} & -2 x^{2} z^{2}\end{array}\right|$
$=\hat{\imath}[0-2 z x]-\hat{\jmath}\left[-4 x z^{2}+1\right]+\hat{k}\left[z^{2}+3 x^{2}\right]=-2 z x \hat{\imath}-\left[1-4 x z^{2}\right] \hat{\jmath}+$ $\left[z^{2}-3 x^{2}\right] \widehat{k}$
4. If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ show that (i) $\nabla \vec{r}=3$ (ii) $\nabla X \vec{r}=0$
$\operatorname{Div} \vec{r}=\frac{\partial r_{1}}{\partial x}+\frac{\partial r_{2}}{\partial y}+\frac{\partial r_{3}}{\partial z}=1+1+1=3$
Curl $\vec{F}=\nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 & 1 & 1\end{array}\right|$
$=\hat{\imath}[0-0]-\hat{\jmath}[0-0]+\hat{k}[0-0]=0$
5.Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that the vector field $\vec{F}=(x+y+a z) \hat{\imath}+$ $(b x+2 y-z) \hat{\jmath}+(x+c y+2 z) \hat{k}$ is irrotational

$$
\begin{aligned}
& \nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y+a z & b x+2 y-z & x+c y+2 z
\end{array}\right| \\
& =\hat{\imath}[c-1]-\hat{\jmath}[1-a]+\hat{k}[b-1]
\end{aligned} \quad \text { If } \mathrm{c}=-1, \mathrm{a}=1, \mathrm{~b}=1 \text { } \quad \begin{aligned}
& =\hat{\imath}[-1-1]-\hat{\jmath}[1-1]+\hat{k}[1-1]=0
\end{aligned}
$$

6. $\vec{F}=e^{x y z}(\hat{\imath}+\hat{\jmath}+\hat{k})$ find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$
$\operatorname{Div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=e^{x y z} y z+e^{x y z} x z+e^{x y z} x y$
Curl $\vec{F}=\nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^{x y z} & e^{x y z} & e^{x y z}\end{array}\right|$
$=\hat{\imath}\left[e^{x y z} x z-e^{x y z} x y\right]-\hat{\jmath}\left[e^{x y z} y z-e^{x y z} x y\right]$
$+\hat{k}\left[e^{x y z} y z-e^{x y z} x z\right]$
7.If: $\vec{V}=3 x \mid y \hat{\imath}+3 x^{2} y \hat{\jmath}-3 a y z \hat{k}$ is solenoidal at $(1,1,1)$ find a Div: $: \vec{\prime}=\nabla \cdot: \vec{\prime}=\frac{\partial V_{1}}{\partial x}+\frac{\partial V_{2}}{\partial y}+\frac{\partial V_{3}}{\partial z}$

$$
=3 y+3 x^{2}-3 a y
$$

If $\mathrm{a}=2$, Div: $: \vec{\prime}=\nabla \cdot \mid: \vec{z}=3+3-3(2)=0$
is solenoidal.
8.Find $\operatorname{div} \vec{A}$ and curl \vec{A} where $\vec{A}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
$\vec{A}=\left(3 x^{2}-3 y z\right) \hat{\imath}+\left(3 y^{2}-3 x z\right) \hat{\jmath}+\left(3 z^{2}-3 x y\right) \hat{k}$
$\operatorname{div} \vec{A}=6 x+6 y+6 z$
Curl $\vec{A}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 x^{2}-3 y z & 3 y^{2}-3 x z & 3 z^{2}-3 x y\end{array}\right|$
$=\hat{\imath}[-3 x+3 x]-\hat{\jmath}[-3 y+3 y]+\hat{k}[-3 z+3 z]=0$
9.Find the constant 'a' so that $\vec{A}=y\left(a x^{2}+z\right) \hat{\imath}+x\left(y^{2}-z^{2}\right) \hat{\jmath}+$ $2 x y(z-x y) \hat{k}$ is solenoidal

$$
\begin{aligned}
& \operatorname{div} \vec{A}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& =2 a x y+2 x y+2 x y=2 a x y+4 x y \\
& =-4 x y+4 x y=0 \text { is solenoidal }
\end{aligned}
$$

10. If $:=(y+z) \hat{\imath}+(z+x) \hat{\jmath}+(x+y) \hat{k}$ is irrational. Also find a scalar function such that $\vec{F}=\nabla \phi$

$$
\begin{aligned}
& \nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y+z & z+x & x+y
\end{array}\right| \\
& \hat{\imath}[1-1]-\hat{\jmath}[1-1]+\hat{k}[1-1]=0 \text { is irrotational } \\
& \vec{F}=\nabla \phi \\
& \quad(y+z) \hat{\imath}+(z+x) \hat{\jmath}+(x+y) \hat{k}=\frac{\partial \Phi}{\partial x} \hat{\imath}+\frac{\partial \Phi}{\partial y} \hat{\jmath}+\frac{\partial \Phi}{\partial z} \hat{k} \\
& \frac{\partial \phi}{\partial x}=y+z \frac{\partial \phi}{\partial y}=z+x \frac{\partial \phi}{\partial z}=x+y \\
& \qquad \phi=\int(y+z) d x+f_{1}(y, z)=(y+z) x+f_{1}(y, z) \\
& \quad \phi=\int(z+x) d y+f_{2}(x, z)=(z+x) y+f_{2}(x, z) \\
& \phi=\int(x+y) d z+f_{3}(x, y)=(x+y) z+f_{3}(x, y) \\
& \quad \phi=(y+z) x+(z+x) y+(x+y) z
\end{aligned}
$$

$$
\text { 11. } \vec{F}=x^{2} \hat{\imath}+y^{2} \hat{\jmath}+z^{2} \hat{k} \text { then find (i) } \nabla . \vec{F} \text { (ii) } \nabla x \vec{F} \text { at the point }(1,1,1)
$$

$$
\nabla . \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=2 x+2 y+2 z=6
$$

$$
\nabla X \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & y^{2} & z^{2}
\end{array}\right|
$$

$$
=\hat{\imath}[0-0]-\hat{\jmath}[0-0]+\widehat{k}[0-0]=0
$$

12. Find divergence and curl of the vector

$$
\vec{F}=\left(x y z+y^{2} z\right) \hat{\imath}+\left(3 x^{2}+y^{2} z\right) \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}
$$

$\operatorname{div} \vec{F}=y z+2 y z+\left(2 x^{2}-y^{2}\right)=3 y z+2 x z-y z$

$$
\begin{aligned}
\nabla \times \vec{F}= & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
. x y z+y^{2} z & 3 x^{2}+y^{2} z & x z^{2}-y^{2} z
\end{array}\right| \\
& =\hat{\imath}\left[-2 y z-y^{2}\right]-\hat{\jmath}\left[z^{2}-x y-y^{2}\right]+\hat{k}[6 x-x z-2 y z]
\end{aligned}
$$

13.If $\vec{F}=(x+y+1) \hat{\imath}+\hat{\jmath}-(x+y) \hat{k}$ show that $\vec{F} . \operatorname{curl} \vec{F}=0$

$$
\begin{gathered}
\begin{aligned}
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(x+y+1) & 1 & -(x+y)
\end{array}\right| \\
=\hat{\imath}[-1-0]-\hat{\jmath}[-1-0]+\hat{k}[0-1]=-\hat{\imath}+\hat{\jmath}-\hat{k} \\
\vec{F} . \operatorname{curl} \vec{F}=[(x+y+1) \hat{\imath}+\hat{\jmath}-(x+y) \hat{k}] \cdot(-\hat{\imath}+\hat{\jmath}-\hat{k}) \\
\vec{F} . \operatorname{curl} \vec{F}=-(x+y+1)+1+(x+y)=0
\end{aligned}
\end{gathered}
$$

14.Find the constants a, b and c so that the

$$
\text { vector } \begin{aligned}
\vec{F} & =(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath} \\
& +(4 x+c y+2 z) \hat{k} \text { is irrotational }
\end{aligned}
$$

$$
\nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+2 y+a z & b x-3 y-z & 4 x+c y+2 z
\end{array}\right|
$$

$$
\nabla X \vec{F}=\hat{\imath}[c+1]-\hat{\jmath}[4-a]+\hat{k}[b-2]
$$

$$
\text { If } \mathrm{c}=-1, \mathrm{a}=4, \mathrm{~b}=2 \quad \nabla \mathrm{X} \vec{F}=0
$$

15.tind the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for which the vector

$$
\begin{aligned}
& : \overrightarrow{:}=(x+y+a z) \hat{\imath}+(b x+3 y-z) \hat{\jmath}+(3 x+c y+2 z) \hat{k} \text { is irrotational } \\
& \nabla \mathrm{X}: \vec{\prime}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y+a z & b x+3 y-z & 3 x+c y+2 z
\end{array}\right| \\
& \nabla \mathrm{X}: \vec{\jmath}=\hat{\imath}[c+1]-\hat{\jmath}[3 \cdot-a]+\hat{k}[b-1] \\
& \text { If } \mathrm{c}=-1, \mathrm{a}=3, \mathrm{~b}=1 \quad \nabla \mathrm{X} \cdot \vec{\jmath}=0
\end{aligned}
$$

16. Find $\operatorname{curl}(\operatorname{curl} \vec{A})$ given $\vec{A}=x y^{\hat{\imath}}+y^{2} \hat{\jmath}+z^{2} y \hat{k}$

$$
\begin{aligned}
& \left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& \operatorname{curl} \vec{A}=\nabla X \vec{A}=\left|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y^{2} z & z^{2} x
\end{array}\right| \\
& \left.=\hat{\imath}\left[z^{2}-y^{2}\right]-\hat{\jmath}[0-0]+\hat{k}^{[0-}-x\right]=\left[z^{2}-y^{2] \hat{\imath}+0 \hat{\jmath}+x \hat{k}}\right. \\
& \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& =\hat{\imath}[0-0]-\hat{\jmath}[-1-2 z]+\hat{k}[0-2 y]=0 \hat{\imath}+[1+2 z] \hat{\jmath}+2 y \hat{k}
\end{aligned}
$$

17. $\vec{F}=\left(3 x^{2} y-z\right) \hat{\imath}+\left(x z^{3}+y^{4}\right) \hat{\jmath}-2 x^{3} z^{2} \hat{k}$ find $\operatorname{grad}(\operatorname{div} \vec{F})$ at $(2,-1,0)$

$$
\begin{aligned}
\operatorname{div} \vec{F} & =6 x y+4 y^{3}-4 x^{3} z \\
\operatorname{grad}(\operatorname{div} \vec{F}) & =(-6-0) \hat{\imath}+(12+12) \hat{\jmath}-32 \hat{k} \\
& =-6 \hat{\imath}+24 \hat{\jmath}-32 \hat{k}
\end{aligned}
$$

18.For what value of 'a' does the vector
$\vec{F}=\left(a x^{2} y+y z\right) \hat{\imath}+\left(x y^{2}-x z^{2}\right) \hat{\jmath}+\left(2 x y z-2 x^{2} y^{2}\right) \hat{k}$
has zero divergences. Also find $\nabla \mathrm{X} \vec{F}$
19.If $\vec{F}=3 x^{2} \hat{\imath}+5 x y^{2} \hat{\jmath}+x y z^{3} \hat{k}$ at (1,2,3), find $\operatorname{div} \vec{F}$

$$
\begin{gathered}
\nabla \cdot \vec{F}=6 x+10 x y+3 x y z^{2} \\
\nabla \cdot \vec{F}(1,2,3)=6+20+54=80
\end{gathered}
$$

20.Find $\operatorname{curl}\left[x y z \hat{\imath}+3 x^{2} y \hat{\imath}+\left(x z^{2}-y^{2} z\right) \hat{k}\right]$

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z & 3 x^{2} y & x z^{2}-y^{2} z
\end{array}\right|
$$

$$
=\hat{\imath}[-2 y z-0]-\hat{\jmath}\left[z^{2}-x y\right]+\hat{k}[6 x y-x z]
$$

$$
\begin{aligned}
& \operatorname{div} \vec{F}=2 a x y+2 y x+2 x y \\
& \text { if } a=-2 \\
& =-4 x y+4 x y=0 \\
& \nabla \mathrm{X} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a x^{2} y+y & x y^{2}-x z^{2} & 2 x y z-2 x^{2} y^{2}
\end{array}\right| \\
& =\hat{\imath}\left[2 x z-4 x^{2} y\right]-\hat{\jmath}\left[2 y z-4 x y^{2}\right]+\hat{k}\left[\left(y^{2}-z^{2}\right)-\left(a x^{2}+z\right)\right]
\end{aligned}
$$

21.Find the divergence and the curl of the vector $\vec{F}=\left(x y z+y^{2} z\right) \hat{\imath}+$ $\left(3 x^{2} y+y^{2} z\right) \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}$

$$
\begin{aligned}
& \operatorname{div} \vec{F}=x z+\left(3 x^{2}+2 y z\right)+2 x z-y^{2} \\
& \operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z+y^{2} z & 3 x^{2} y+y^{2} z & x z^{2}-y^{2} z
\end{array}\right| \\
& =\hat{\imath}\left[-2 y z-y^{2}\right]-\hat{\jmath}\left[z^{2}-x y-y^{2}\right]+\hat{k}[6 x y-x z-2 y z]
\end{aligned}
$$

22. Prove that $\operatorname{div}(\operatorname{curl} \vec{A})=0$ if $\overrightarrow{\mathcal{A}}=a_{1} \hat{\imath}+a_{\overrightarrow{2}}^{\hat{\imath}}+\tau_{3} \hat{k}$

$$
\begin{gathered}
\operatorname{curl} \vec{A}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
a_{1}
\end{gathered} \frac{\partial}{\partial z} \left\lvert\,,\left(\frac{\partial a_{3}}{\partial y}-\frac{\partial a_{2}}{\partial z}\right) \hat{\imath}-\left(\frac{\partial a_{3}}{\partial x}-\frac{\partial a_{1}}{\partial z}\right) \hat{\jmath}+\left(\frac{\partial a_{2}}{\partial x}-\frac{\partial a_{1}}{\partial y}\right) \hat{k}\right.
$$

23. Prove that $\operatorname{curl}(\operatorname{grad} \phi)=0$

$$
\begin{aligned}
& \operatorname{grad} \Phi=\frac{\partial \Phi}{\partial x} \hat{\imath}+\frac{\partial \phi}{\partial y} \hat{\jmath}+\frac{\partial \Phi}{\partial z} \hat{k} \\
& \left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& \operatorname{curl}(\operatorname{grad} \phi)=\left|\begin{array}{lll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right| \\
& =\hat{\imath}\left[\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial y \partial z}\right]-\hat{\jmath}\left[\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{2} \phi}{\partial x \partial z}\right]+\hat{k}\left[\frac{\partial^{2} \phi}{\partial y \partial x}-\frac{\partial^{2} \phi}{\partial y \partial x}\right]=0
\end{aligned}
$$

24.Prove that $\nabla(\vec{A} X \vec{B})=\vec{B} . \operatorname{curl} \vec{A}-\vec{A} . \operatorname{curli} \overrightarrow{3}$

$$
\begin{aligned}
\nabla(\vec{A} X \mid \vec{\jmath})=\Sigma \hat{\imath} \cdot \frac{\partial}{\partial x} & (A X B) \\
& =\Sigma \hat{\imath} .\left(\frac{\partial A}{\partial x} X B\right)+\Sigma \hat{\imath} .\left(A X \frac{\partial B}{\partial x}\right)
\end{aligned}
$$

Interchange dot to cross

$$
:=\Sigma\left(\hat{\imath} X \frac{\partial A}{\partial x}\right) \cdot B-\Sigma\left(\hat{\imath} X \frac{\partial B}{\partial x}\right) \cdot A
$$

$=\operatorname{curl} \vec{A} \cdot \mid \vec{B}-\operatorname{curlil} \cdot \vec{A} \cdot \vec{A}$
From the identity,

$$
\vec{a} \cdot(b X \vec{c})=(\vec{a} X b) \cdot \vec{c}=-\vec{a} \cdot(c X \mid i)
$$

25.If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $|\vec{r}|=r$ find $\operatorname{grad}\left(\operatorname{div} \frac{\vec{r}}{r}\right)$

$$
\begin{gathered}
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \quad r^{2}=x^{2}+y^{2}+z^{2} \\
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r} \quad \frac{\partial r}{\partial z}=\frac{z}{r} \\
\operatorname{div} \frac{\vec{r}}{r}=\frac{d\left(r^{-1} x\right)}{d x}+\frac{d\left(r^{-1} y\right)}{d y}+\frac{d\left(r^{-1} z\right)}{d z} \\
r^{-1}+x(-1) r^{-2} \frac{\partial r}{\partial x}+y(-1) r^{-2} \frac{\partial r}{\partial y}+z(-1) r^{-2} \frac{\partial r}{\partial z} \\
=3 r^{-1}-r^{-3\left(x^{2}+y^{2}+z^{2}\right)}=3 r^{-1}-r^{-1}=2 r^{-1} \\
\operatorname{grad}\left(\operatorname{div} \frac{\vec{r}}{r}\right)=\frac{\partial}{\partial x}\left(2 r^{-1}\right) \hat{\imath}+\frac{\partial}{\partial y}\left(2 r^{-1}\right) \hat{\jmath}+\frac{\partial}{\partial z}\left(2 r^{-1}\right) \hat{k}
\end{gathered}
$$

$$
-2 r^{-2} \frac{\partial r}{\partial x} \hat{\imath}-2 r^{-2} \frac{\partial r}{\partial y} \hat{\jmath}-2 r^{-2} \frac{\partial r}{\partial z} \hat{k}
$$

26. Prove that $\nabla \mathrm{X}(\nabla \mathrm{X})=\nabla(\nabla \cdot \vec{F})-\nabla^{\wedge} 2 \vec{F}$ where
$0 \hat{\imath}+\hat{\jmath}(-2 x+6 z)+0 \hat{k}$

$$
\nabla \vec{F}=2 x y-6 y z
$$

$$
\nabla(\nabla . \vec{F})=2 y \hat{\imath}+(2 x-6 z) \hat{\jmath}-6 y \hat{k}
$$

$$
\nabla^{\wedge} 2 \vec{F}=\frac{\partial^{2} F}{\partial x^{2}} \hat{\imath}+\frac{\partial^{2} F}{\partial y^{2}} \hat{\jmath}+\frac{\partial^{2} F}{\partial z^{2}} \hat{k}=2 y \hat{\imath}+0 \hat{\jmath}-6 y \hat{k}
$$

$$
\begin{equation*}
\nabla(\nabla \cdot \vec{F})-\nabla^{\wedge} 2 \vec{F}=2 y \hat{\imath}+(2 x-6 z) \hat{\jmath}-6 y \hat{k}-2 y \hat{\imath}+6 y \hat{k} \tag{2x-6z}
\end{equation*}
$$

From 1. \& 2.,
L.H.S = R.H.S

$$
\begin{aligned}
& \vec{F}=x^{2}{ }^{2} \hat{\imath}+z x \hat{\jmath}-3 y z^{2} \hat{k} \\
& \operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& =\hat{\imath}\left[-3 z^{2}--x\right]-\hat{\jmath}[0-0]+\hat{k}\left[z-\tau^{2}\right] \\
& \left.\right|_{n\lrcorner \hat{\imath}} \hat{\jmath} \hat{k} \text { l, } \\
& \operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-3 z^{2}-x & 0 & z-x^{2}
\end{array}\right| \\
& =\hat{\imath}[0-0]-\hat{\jmath}[-2 x+6 z]+\hat{k}[0-0]
\end{aligned}
$$

27.Prove that $(\vec{F} \times \nabla) \times \vec{r}=-2 \vec{F}$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array} l_{,} .\right. \\
& (\vec{F} X \nabla) \mathrm{X} \vec{r}=\left|\begin{array}{ccc}
F_{1} & F_{2} & F_{3} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right| \\
& \hat{\imath}\left[F_{2} \frac{\partial}{\partial z}-F_{3} \frac{\partial}{\partial y}\right]-\hat{\jmath}\left[F_{1} \frac{\partial}{\partial z}-F_{3} \frac{\partial}{\partial x}\right]+\hat{\jmath}\left[F_{1} \frac{\partial}{\partial y}-F_{2} \frac{\partial}{\partial x}\right] \\
& (\vec{F} \mathrm{X} \nabla) \mathrm{X} \vec{r}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
F_{2} \frac{\partial}{\partial z}-F_{3} \frac{\partial}{\partial y} & F_{1} \frac{\partial}{\partial z}-F_{3} \frac{\partial}{\partial x} & F_{1} \frac{\partial}{\partial y}-F_{2} \frac{\partial}{\partial x} \\
x & y & z
\end{array}\right| \\
& =\Sigma \hat{\imath}\left[F_{2} \frac{\partial z}{\partial x}-F_{1} \frac{\partial z}{\partial z}\right]-\left[F_{1} \frac{\partial y}{\partial y}-F_{3} \frac{\partial y}{\partial z}\right] \\
& =\Sigma \hat{\imath}\left[-F_{1}-F_{1}\right]=-2 F_{1} \hat{\imath} \\
& =-2 F_{1} \hat{\imath}-2 F_{2} \hat{\jmath}-2 F_{3} \hat{k} \\
& =-2\left[F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{k}\right] \\
& =-2 \vec{F}
\end{aligned}
$$

 Let $\hat{\vec{V}}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$

$$
\begin{gathered}
\vec{V}=\vec{W} X \vec{R}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
x & y & z
\end{array}\right| \\
\vec{\gamma}=\hat{\imath}\left[a_{2} z-a_{3} y\right]-\hat{\jmath}\left[a_{1} z-a_{3} x\right]+\hat{k}\left[a_{1} y-a_{2} x\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { curl: } \vec{V}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
& \text { curl } \dot{:}: \vec{\imath}=\hat{\imath}\left[a_{1}+a_{1}\right]-\hat{\jmath}\left[-a_{2}-a_{2}\right]+\hat{k}\left[a_{3}+a_{3}\right] \\
& =2 a_{1} \hat{\imath}+2 a_{2} \hat{\jmath}+2 a_{3} \hat{k} \\
& =2\left[a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right] \\
& \operatorname{curl} \dot{i}^{\vec{\prime}}=-2^{\vec{j}}
\end{aligned}
$$

29.If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $|\vec{r}|=r$ then prove that $\frac{\vec{r}}{r^{3}}$ is solenoidal

$$
\begin{gathered}
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \quad r^{2}=x^{2}+y^{2}+z^{2} \\
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r} \quad \frac{\partial r}{\partial z}=\frac{z}{r} \\
\operatorname{div} \frac{\vec{r}}{r^{3}}=\operatorname{div}\left(x r^{-3} \hat{\imath}+y r^{-3} \hat{\jmath}+z r^{-3} \hat{k}\right) \\
=\frac{\partial}{\partial x}\left(x r^{-3}\right)+\frac{\partial}{\partial y}\left(y r^{-3}\right)+\frac{\partial}{\partial z}\left(z r^{-3}\right) \\
\operatorname{div} \frac{\vec{r}}{r^{3}}=r^{-3} 3 x r^{-4} \frac{\partial r}{\partial x}+r^{-3} 3 y r^{-4} \frac{\partial r}{\partial y}-r^{-3} 3 z r^{-4} \frac{\partial r}{\partial z} \\
=3 r^{-3}-3 r^{-5}\left(x^{2}+y^{2}+z^{2}\right) \\
=3 r^{-3}-3 r^{-3}=0
\end{gathered}
$$

30. $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $|\vec{r}|=r$ then prove that $\operatorname{div}\left(r^{3} \vec{r}\right)$

$$
\begin{array}{ll}
r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} & r^{2}=x^{2}+y^{2}+z^{2} \\
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r} \quad \frac{\partial r}{\partial z}=\frac{z}{r} &
\end{array}
$$

$$
\begin{gathered}
\operatorname{div}\left(r^{3} \vec{r}\right)=\operatorname{div}\left(x r^{3} \hat{\imath}+y r^{3} \hat{\jmath}+z r^{3} \hat{k}\right) \\
=\frac{\partial}{\partial x}\left(x r^{3}\right)+\frac{\partial}{\partial y}\left(y r^{3}\right)+\frac{\partial}{\partial z}\left(z r^{3}\right) \\
=r^{-3}+x 3 r^{2} \frac{\partial r}{\partial x}+r^{3}+3 y r^{2} \frac{\partial r}{\partial y}+r^{3}+3 z r^{2} \frac{\partial r}{\partial z} \\
=3 r^{3}+3 r\left(x^{2}+y^{2}+z^{2}\right) \\
=3 r^{3}+3 r^{3}=6 r^{3}
\end{gathered}
$$

31.Find $\nabla^{2} r^{n}$ where $r=|x \hat{\imath}+y \hat{\imath}+z \hat{k}|$ and further show that it is equal zero if $n=-1$

$$
\begin{gathered}
\nabla^{2} r^{n}=\frac{\partial^{2}}{\partial x^{2}}\left(r^{n}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(r^{n}\right)+\frac{\partial^{2}}{\partial z^{2}}\left(r^{n}\right) \\
\frac{\partial^{2}}{\partial x^{2}}\left(r^{n}\right)=n r^{n-1} \frac{\partial r}{\partial x}=n x r^{n-2} \\
\frac{\partial^{2}}{\partial x^{2}}\left(r^{n}\right)=n\left[r^{n-1}+x(n-2) r^{n-3} \frac{\partial r}{\partial x}\right] \\
r=|x \hat{\imath}+y \hat{\jmath}+z \hat{k}| \\
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
r^{2}=x^{2}+y^{2}+z^{2} \\
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r}=\frac{z}{r} \\
=n\left[r^{n-2} \cdot 1+x^{2}(n-2) r^{n-4}\right] \\
=n r^{n-2}+n(n-2) r^{n-4} x^{2} \\
\frac{\partial^{2}}{\partial y^{2}}\left(r^{n}\right)=n r^{n-2}+n(n-2) r^{n-4} y^{2}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2}}{\partial z^{2}}\left(r^{n}\right)=n r^{n-2}+n(n-2) r^{n-4} z^{2} \\
\nabla^{2} r^{n}=3 n r^{n-2}+n(n-2) r^{n-4}\left(x^{2}+y^{2}+z^{2}\right) \\
=3 n r^{n-2}+n(n-2) r^{n-2} \\
=n r^{n-2}[3+n-2] \\
=n r^{n-2}[n+1]=0 \\
\text { if } n=-1
\end{gathered}
$$

32.If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then show that 1. $\operatorname{grad} \frac{1}{|\vec{r}|}=\frac{-\vec{r}}{|\vec{r}|^{3}}$

$$
2 . \operatorname{grad}|\vec{r}|^{3}=3|\vec{r}| \vec{r}
$$

$$
\begin{gathered}
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}=\left(x^{2}+y^{2}+z^{2}\right)^{\wedge} 1 / 2 \Rightarrow \\
|\vec{r}|^{2}=\left(x^{2}+y^{2}+z^{2}\right) \\
\frac{1}{|\vec{r}|}=\left(x^{2}+y^{2}+z^{2}\right)^{\wedge}-1 / 2 \\
\operatorname{grad} \frac{1}{|\vec{r}|}=\frac{\partial}{\partial x} \frac{1}{|\vec{r}|} \hat{\imath}+\frac{\partial}{\partial y} \frac{1}{|\vec{r}|} \hat{\jmath}+\frac{\partial}{\partial z} \frac{1}{|\vec{r}|} \hat{k} \\
\frac{\partial}{\partial x} \frac{1}{|\vec{r}|}=-\frac{1}{2}\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{1}{2}} 2 x=-x\left[x^{2}+y^{2}+z^{2}\right]^{-\frac{3}{2}} \\
=-x\left[|\vec{r}|^{2}\right]^{-\frac{3}{2}}=-x|\vec{r}|^{3}
\end{gathered}
$$

Similarly, $\frac{\partial}{\partial y} \frac{1}{|\vec{r}|}=-y|\vec{r}|^{3} \frac{\partial}{\partial z} \frac{1}{|\vec{r}|}=-z|\vec{r}|^{3}$

$$
\operatorname{grad} \frac{1}{|\vec{r}|}=-x|\vec{r}|^{-3} \hat{\imath}-y|\vec{r}|^{-3} \hat{\jmath}-z|\vec{r}|^{-3} \hat{k}
$$

$$
\begin{gathered}
=-|\vec{r}|^{-3}[x \hat{\imath}+y \hat{\jmath}+z \hat{k}]=-\frac{\vec{r}}{|\vec{r}|^{-3}} \\
\operatorname{grad}|\vec{r}|^{3}=\frac{\partial}{\partial x}|\vec{r}| \hat{\imath}+\frac{\partial}{\partial y}|\vec{r}|^{3} \hat{\jmath}+\frac{\partial}{\partial z}|\vec{r}|^{3} \hat{k} \\
|\vec{r}|^{3}=\left[x^{2}+y^{2}+z^{2}\right]^{\frac{3}{2}} \\
\frac{\partial}{\partial x}|\vec{r}|^{3}=\frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} 2 x=3 x\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} \\
=3 x|\vec{r}|
\end{gathered}
$$

Similarly, $\frac{\partial}{\partial y}|\vec{r}|^{3}=3 y|\vec{r}| \frac{\partial}{\partial z}|\vec{r}|^{3}=3 z|\vec{r}|$

$$
\begin{gathered}
\operatorname{grad}|\vec{r}|^{3}=3 x|\vec{r}| \hat{\imath}+3 y|\vec{r}| \hat{\jmath}+3 z|\vec{r}| \hat{k} \\
\operatorname{grad}|\vec{r}|^{3}=3|\vec{r}|[x \hat{\imath}+y \hat{\jmath}+z \hat{k}]=3|\vec{r}| \vec{r}
\end{gathered}
$$

33.If \vec{A} and ${ }^{3}$ are two irrotationial vector function, then prove that $\vec{A} X$ solenoidal

$$
\operatorname{div}(\vec{A} X \overrightarrow{\vec{\beta}})=\vec{B} \cdot \operatorname{curl} \vec{A}-\vec{A} \cdot \operatorname{tr} u r l \vec{B}
$$

\vec{A} and \vec{B} are irrotational, hence $\operatorname{curl} \vec{A}=\operatorname{curli} \overrightarrow{3}=0$
Then $\operatorname{div}(\vec{A} X X \vec{B})=0$
Hence $(\vec{A} X i \vec{B})$ is solenoidal
34.State the condition under which a vector function is irrotational and when it is solenoidal, prove that

$$
\begin{aligned}
& \vec{F}=(\sin y+z) \hat{\imath}+(x \cos y-z) \hat{\jmath}+(x-y) \hat{k} \text { is irrotational } \\
& \vec{G}=(x+3 y) \hat{\imath}+(y-2 z) \hat{\jmath}+(x-2 z) \hat{k} \text { is solenoidal }
\end{aligned}
$$

The function \vec{F} is irrotational if $\operatorname{curl} \vec{F}=0$ and is soleneidal if $\operatorname{Div} \vec{F}=0$

$$
\begin{aligned}
& \begin{array}{llll}
& \hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{\imath}[-1+1]-\hat{\jmath}[1-1]+\hat{k}\left[\cos v_{v}-\cos v\right]_{\nu}=0 \\
& =0 \text { is irrotational }
\end{aligned}
$$

$\operatorname{Di} v \vec{F}=\frac{\partial}{\partial x}(x+3 y)+\frac{\partial}{\partial y}(y-2 z)+\frac{\partial}{\partial z}(x-2 z)$

$$
=1+1-2
$$

35.Find curl \vec{F} where $\vec{F}=\frac{x}{r} \hat{\imath}+\frac{y}{r} \hat{\jmath}+\frac{z}{r} \hat{k}$ and

$$
r=|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|
$$

$$
\begin{gathered}
r=|x \hat{\imath}+y \hat{\jmath}+z \hat{k}| \\
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
r^{2}=x^{2}+y^{2}+z^{2} \\
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \frac{\partial r}{\partial y}=\frac{y}{r} \quad \frac{\partial r}{\partial z}=\frac{z}{r} \\
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k}
\end{array}\right| \\
\operatorname{curl} \vec{F}=\left|\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{x}{\partial z} & \frac{y}{r} \\
\frac{z}{r}
\end{array}\right| \\
=\hat{\imath}\left[\frac{-z \frac{\partial r}{\partial y}}{r^{2}}+\frac{y \frac{\partial r}{r^{2}}}{r^{2}}\right]-\hat{\jmath}\left[\frac{-z \frac{\partial r}{\partial x}}{r^{2}}+\frac{y \frac{\partial r}{\partial z}}{r^{2}}\right]+\hat{k}\left[\frac{-z \frac{\partial r}{\partial x}}{r^{2}}+\frac{y \frac{\partial r}{\partial y}}{r^{2}}\right] \\
=\hat{\imath}\left[-\frac{z y}{r^{3}}+\frac{z y}{r^{3}}\right]-\hat{\jmath}\left[-\frac{z x}{r^{3}}+\frac{z x}{r^{3}}\right]+\hat{k}\left[-\frac{y x}{r^{3}}+\frac{x y}{r^{3}}\right]=0
\end{gathered}
$$

36.Prove that $\operatorname{div}(\vec{A}+\vec{B})=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)(A H+B)$

$$
\begin{gathered}
=\hat{\imath} \cdot \frac{\partial}{\partial x}[A+B]+\hat{\jmath} \cdot \frac{\partial}{\partial y}[A+B]+\hat{k} \cdot \frac{\partial}{\partial z}[\vec{A}+\vec{B}] \\
=\hat{\imath} \cdot\left[\frac{\partial A}{\partial x}+\frac{\partial B}{\partial x}\right]+\hat{\jmath} \cdot\left[\frac{\partial A}{\partial y}+\frac{\partial B}{\partial y}\right]+\hat{k} \cdot\left[\frac{\partial A}{\partial z}+\frac{\partial A}{\partial z}\right] \\
{\left[\hat{\imath} \cdot \frac{\partial A}{\partial x}+\hat{\jmath} \cdot \frac{\partial A}{\partial y}+\hat{k} \cdot \frac{\partial A}{\partial z}\right]+\left[\hat{\imath} \cdot \frac{\partial B}{\partial x}+\hat{\jmath} \cdot \frac{\partial B}{\partial y}+\hat{k} \cdot \frac{\partial B}{\partial z}\right]} \\
=\operatorname{div} \vec{A}+\operatorname{div} \vec{B}
\end{gathered}
$$

37. With usual notation, prove that $\nabla^{2} f(r)=\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial r}{\partial f}$ where $r^{2}=x^{2}+y^{2}+z^{2}$

Let $\phi=f(r) \quad$ Diff. w.r.t. x

$$
\begin{gathered}
\frac{\partial \phi}{\partial x}=f^{\prime}(\mathrm{r}) \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=f^{\prime}(r) \frac{x}{r} \\
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{x}{r} f^{\prime \prime}(r) \frac{\partial r}{\partial x}+f^{\prime}(r)\left[\frac{r-x \frac{\partial r}{\partial x}}{r^{2}}\right] \\
=\frac{x^{2}}{r^{3}} f^{\prime \prime}(r)+f^{\prime}(r)\left[\frac{1}{r}-\frac{x^{2}}{r^{3}}\right] \\
\frac{\partial^{2} \Phi}{\partial x^{2}}=\frac{x^{2}}{r^{2}} f^{\prime \prime}(r)+\frac{f^{\prime}(r)}{r}-\frac{x^{2} f^{\prime}(r)}{r^{3}} \\
\frac{\partial^{2} \Phi}{\partial y^{2}}=\frac{y^{2}}{r^{2}} f^{\prime \prime}(r)+\frac{f^{\prime}(r)}{r}-\frac{y^{2} f^{\prime}(r)}{r^{3}} \\
\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{z^{2}}{r^{2}} f^{\prime \prime}(r)+\frac{f^{\prime}(r)}{r}-\frac{z^{2} f^{\prime}(r)}{r^{3}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}} \\
=\frac{f^{\prime \prime}(r)}{r^{2}}\left(x^{2}+y^{2}+z^{2}\right)+\frac{3 f^{\prime}(r)}{r}-\frac{f^{\prime}(r)}{r^{3}}\left(x^{2}+y^{2}+z^{2}\right) \\
=f(\mathrm{r})+\frac{3 f^{\prime}(r)}{r}-\frac{f^{\prime}(r)}{r} \\
\nabla^{2} f(r)=f(\mathrm{r})+\frac{2 f^{\prime}(r)}{r}
\end{gathered}
$$

